第六百四十章 蒙日-安培方程(偏微分方程)
作者:蔡泽禹   数学心最新章节     
    常见于黎曼几何的非线性偏微分方程。

    是一个极为艰深而复杂的偏微分方程,叫作复的monge-ampere方程。

    魏尔说:“当时还没有足够的数学理论来攻克它。”

    这个方程需要用动态图才可以演示出来。

    卡拉比说:“一片贴在固定钢圈上的平坦塑料布。假定这片塑料布既没有刻意拉紧,也不会太松,那么当我们推挤这片塑料布时,它所形成的曲面会怎么弯曲或变化呢?如果是在中央处拉开,它会造成正曲率的向上隆起,这种蒙日—安培方程的解是“椭圆”型的。反过来说,如果塑料布的中心向内弯扭,曲面会变成曲率处处为负的鞍形,而其解是“双曲”型的。最后,如果曲率处处为零,则其解为“抛物”型。”

    丘成桐知道,如果不管哪一种情形,要解的原始蒙日—安培方程都是一样的,但是必须用完全不同的技巧来解。

    而上述三种微分方程里,我们分析椭圆型的技巧最为完备。椭圆型方程处理较简单的静止状况,物体不随时间或在空间中移动。这类方程用于描述不再随时间变化的物理系统,例如停止振动、回复平衡的鼓等。不仅如此,椭圆型方程的解也是三种里最容易理解的,因为当把它们绘成函数时,看来是光滑的,而且尽管在某些非线性椭圆型方程中会出现奇点,但我们几乎不会碰到棘手的奇点。

    双曲型微分方程描述的是像永远不会达到平衡状态的波与振动。和椭圆型不同,这类方程的解通常有奇点,因此处理起来困难许多。如果是线性的双曲型方程,我们还可以处理得相当好(线性指的是当改变某一变数的值时,另一变数的值会成比例变化),但如果是非线性双曲型方程,我们就没有有效的工具来控制奇点。

    抛物型方程则介于两者之间,描述的是最终会趋于平衡的稳定物理系统,例如振动中的鼓,但因还未到达平衡状态,因此必须考虑时间的变化。与双曲型相比,这类方程较少出现奇点,而且就算有,奇点也会慢慢趋于平滑,因此就处理的困难度而言,也介于椭圆型和双曲型之间。

    然而,数学上的挑战还不仅止于此。虽然最简单的蒙日—安培方程只有两个变数,许多方程则有更多变数。有些方程已超出双曲的程度,有时称为超双曲型;关于这类方程的解,我们所知甚少。

    卡拉比所说的:“一旦超出了熟悉的三种类型,我们就对方程的解毫无头绪,因为在此并没有物理世界的现象可资援引。”

    由于这三类方程的难易度有所不同,迄今为止,绝大多数来自几何分析的贡献,都是关于椭圆型和抛物型的情况。

    当然我们对三类方程都有兴趣,而且双曲型方程还有许多引人入胜的问题,像是完整的爱因斯坦方程。只要还有余裕,数学家当然是非常想要解决的。